

CHEMICAL ENGINEERING

With Oyama Group – Molecular Dynamics Study (Hybrid Inorganic / Organic membranes)

Membrane separation -- wide use in natural gas processing

inorganic membrane

Selective layer (silica, palladium) Intermediate layer (alumina)

Support (alumina, stainless steel)

Chemical Engineering

Hybrid Inorganic-Organic Membrane (exploit the reactivity of the Si-OR bonds)

Prepared by high-temperature thermal decomposition of organic precursors Polymer

- Phenyltriethoxysilane
- Other derivatives: Tetraethyl orthosilicate (TEOS)

Experimental data (need high P & S)

Two Specific Aims

- 1. Construct Inorganic/Organic Membrane by MD
- 2. Simulate Separation of CO_2/CH_4 by MD

AIM1-- Membrane Structure: Pore Creation and Insertion of Phenyl Groups

- Zhenxing Wang, Luke E.K. Achenie, Sheima Jativ Khativa and S. Ted Oyama, "Simulation study of carbon dioxide and

WirginiaTech

#4 11.93 Å

CHEMICAL ENGINEERING

DEPARTMENT OF

		DEPARTMENT OF	Har off off off office				
AIM 1 – Phenyl Group & Partial Charge Effects – Initial MD							
	CO₂ (mol m ⁻² s ⁻¹ Pa ⁻¹)	CH ₄ (mol m ⁻² s ⁻¹ Pa ⁻¹)	Selectivity				
No Phenyl Groups No Charge	1.97×10 ⁻⁴	6.66 × 10 ⁻⁴	0.30				
7Phenyl Groups No Charge	6.62×10 ⁻⁵	2.52 × 10 ⁻⁵	2.63				
7 Phenyl Groups Partial Charge	1.18×10 ⁻⁴	1.64 × 10 ⁻⁶	71.95				

- Zhenxing Wang, Luke E.K. Achenie, Sheima Jativ Khativa and S. Ted Oyama, "Simulation study of carbon dioxide and methane gas permeation in hybrid organic-inorganic membrane," Journal of Membrane Science., **387/388**, 30–39, 2012.

MD Simulation

-- Gu, Yunfeng, Vaezian, Bita, Jatib Khatib, Sheima, Oyama, S. Ted, Wang, Zhenxing and Achenie, Luke, "Hybrid H2-Selective Membranes Prepared by Chemical Vapor Deposition," *Separation Science and Technology.* **47(12)**, 1698-1708, 2012.

-- Zhenxing Wang, Luke E.K. Achenie, Sheima Jativ Khativa and S. Ted Oyama, "Simulation study of carbon dioxide and methane gas permeation in hybrid organic-inorganic membrane," Journal of Membrane Science., **387/388**, 30–39, 2012.

	Virgini	aTech	Departm C	ENT OF CH3 OF CH	ER			
	Molecular dynamics study							
Results of models without phenyl group								
		CO ₂ permeance (mol m ⁻² s ⁻¹ Pa ⁻¹)	CH ₄ permeance (mol m ⁻² s ⁻¹ Pa ⁻¹)	selectivity				
	1	5.12 × 10 ⁻⁴	6.47 × 10 ⁻⁴	0.79				
	2	6.35 × 10 ⁻⁴	8.92 × 10 ⁻⁴	0.71				
	3	1.45 × 10 ⁻³	1.73 × 10 ⁻³	0.84				
	4	1.24 × 10 ⁻³	2.04×10^{-3}	0.61				
11								

	VirginiaTech			Departmen CH	NT OF CH. OH CHIEROFICE	ERI		
		Molecular dynamics study						
Permeance of models with phenyl group								
		# Ph Grps	CO ₂ permeance (mol m ⁻² s ⁻¹ Pa ⁻¹)	CH ₄ permeance (mol m ⁻² s ⁻¹ Pa ⁻¹)	selectivity			
	O4.0-1	1	2.87 × 10 ⁻ 4	1.66 × 10 ⁻⁵	17.3			
	O4.0-2	2	1.20 × 10 ⁻⁴	3.88 × 10 ⁻⁶	-			
	S 5.0 <mark>-2</mark>	2	1.14 × 10 ⁻³	8.53 × 10 ⁻⁴	1.34			
	S 5.0-4	4	1.10 × 10 ⁻³	5.33 × 10 ⁻⁴	2.06			
	S 5.3 <mark>-2</mark>	2	1.12 × 10 ⁻³	1.06 × 10 ⁻³	1.06			
12	S 5.3 <mark>-4</mark>	Compa	are with $Seleta$	ectivity of 19 from	0.91 Expts.			

DEPARTMENT OF WirginiaTech CHEMICAL ENGINEERING 2nd Modeling Approach – Mixed Mechanisms Mechanism Schematic Activated diffusion Surface diffusion Knudsen diffusion Direction and velocity

Mixed Mechanism Diffusion Model

Micro-structure # 2

CHEMICAL ENGINEERING

WirginiaTech

Invent the Future

DEPARTMENT OF CHEMICAL ENGINEERING Multi-Scale modeling of chemical vapor deposition processes

- Application: •Used in the semiconductor industry to produce thin films on wafer substrate
- •Reflective window
- •Laser dooms
- •Nano sensors
- •Blue light diodes
- •Luminescent displays
- •Infra-red devices(anti reflection coating)

16

1. T, Matsuoka, A. Ohki, T. Ohno, and Y.Kawaguchi, J. Cryst. Growth 138, 727, 1994.

CVD of Zinc Sulfide

Gas phase reaction $Zn(g) + H_2S \rightarrow ZnS(g) + H_2(g)$ Surface reactions $Z n S (g) \rightarrow Z n S (s)$

CHEMICAL ENGINEERING

18

Gas Phase reaction mechanism (ZnS) via DFT Molecular Modeling

WirginiaTech

DEPARTMENT OF CHEMICAL ENGINEERING

Effect of substrate geometry on deposition rate

Uniform Deposition – Shape Optimization

WirginiaTech

Sharifi, Y. and Achenie, L.E.K. "Effect of substrate geometry on deposition rate in CVD," *Journal of Crystal Growth*, **304**, 520–525, 2007.

DEPARTMENT OF

Chemical Engineering

CHEMICAL ENGINEERING

Cluster formation in Zinc Sulfide CVD

Cause:

WirginiaTech

- 1. High temperature (973K)
- 2. Highly reactive precursors

Disadvantages:

- 1. Particle settlement(gravity)
- 2. Outflow of particles
- 3. Impurity and defects [1].
- 4. Inefficient Use of precursors

Control the cluster formation [2]:

- 1. Mechanism
- 2. Dynamics

What is the morphology of these particles?

[1] Wear 255 (2003) 115–120 [2] Journal of Crystal Growth 208 (2000) 259-263.

Particle size and distribution

WirginiaTech

0.00e+00

1.33e+17

2.66e+17

3.98e+17

5.31e+17

6.64e+17

7.97e+17

-- Sharifi, Y. and Achenie, L.E.K., "Particle Dynamics in a CVD Reactor: A Multiscale Approach," *Ind. Eng. Chem. Res.*, **48(13)**, 5969-5974, 2009.

CHEMICAL ENGINEERING

H,C

Summary

Molecular Modeling as an Enabling Tool in Advanced Material Research

Acknowledgements:

- Funding from NSF, DOE
- Graduate Students

Thank You !!